

SYNTHESIS AND SAR OF 2- AND 3-SUBSTITUTED 7-AZAINDOLES AS POTENTIAL DOPAMINE D₄ LIGANDS

Neil R. Curtis, ** Janusz J. Kulagowski, * Paul D. Leeson, * Mark P. Ridgill, * Frances Emms, † Stephen B. Freedman, † Shil Patel † and Smita Patel †

Departments of Medicinal Chemistry[§] and Biochemistry,[†] Merck Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, U.K.

Received 6 November 1998; accepted 11 January 1999

Abstract: 7-azaindole compounds bearing a cyclic amine moiety linked by a one or two carbon chain attached at the 2- or 3-position were synthesised and evaluated as potential dopamine D_4 ligands. Highest affinity and selectivity for the D_4 receptor resided in the 3-aminomethyl-7-azaindole series. © 1999 Elsevier Science Ltd. All rights reserved.

The dopaminergic system is thought to play a key role in the manifestation of schizophrenic illness, ¹ a belief supported by the observation that clinically effective antipsychotic agents act as antagonists at the dopamine D_2 receptor. ² The discovery of two new dopamine receptor subtypes with close homology to the D_2 receptor, designated D_3 and D_4 , ³ and the disclosure of preferential binding of the atypical antipsychotic drug clozapine to the D_4 receptor ⁴ has elicited considerable interest. ⁵ These intriguing findings prompted us to initiate a programme to identify a selective D_4 antagonist for evaluation in the clinic, leading to the discovery of the pyrrolo[2,3-b]pyridine (7-azaindole) L-745,870 (1a). ⁶⁻¹⁰

As a continuation of our study of 7-azaindole compounds as potential D_4 ligands we sought to investigate variation of the length (one or two carbon atoms) and position of attachment (C-2 or C-3) of the chain linking the heterocycle and the cyclic amine moiety. In this letter we describe the synthesis and dopamine receptor subtype binding affinities of examples of alternative 7-azaindole structures 2, 3 and 4.

0960-894X/99/\$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. *PII*: S0960-894X(99)00025-6

^{*} E-mail: Neil_Curtis@Merck.com; Fax: +44 (0)1279 440390.

Chemistry

L-745,870 (1a) and analogues (1b-d) were readily prepared by Mannich reaction or displacement of 7-azagramine (5).⁶ We envisaged that the homologated C-3 linked compounds 2 would be available by extension of the Larock indole methodology,¹¹ recently used for synthesis of the 5-HT_{1D} receptor agonist MK-0462,¹² to 7-azaindole preparation.¹³ Thus, 2-amino-3-iodopyridine (6)¹⁴ was reacted with protected acetylene 7¹² to afford a modest yield of azatryptol 8, as the only regioisomer observed (Scheme 1). The expected regiochemistry^{11,12} was confirmed by nOe experiment. The alcohol 8 was activated as the mesylate, displaced by the appropriate cyclic amine and the azaindole desilylated to give 2. It is noteworthy that the C-2 triethylsilyl group was stable to HCl-MeOH conditions, in contrast to related indole compounds.¹²

Scheme 1

Synthesis of the 2-aminomethyl compounds 3 was accomplished by amine coupling of 7-azaindole-2-carboxylic acid (10) and subsequent reduction of amide 11 (Scheme 2). The acid 10 was prepared from 7-azaindole *via* directed lithiation of the 1-carboxylate protected intermediate 9.¹⁵

Scheme 2

The 2-aminoethyl-7-azaindoles **4** were prepared by reaction of the dilithio species derived from 2-tert-butylcarbonylamino-3-methylpyridine (**12**) with an amino ester **13**, followed by treatment with hydrochloric acid, in a modification of a recently published method (**Scheme 3**). The yields for this procedure were low due to competing side reactions and were not optimised, although replacing amino ester **13** with the corresponding Weinreb amide was unsuccessful.

Scheme 3

Table - Human dopamine D₂, D₃ and D₄ receptor binding affinities of 7-azaindole compounds

NR₂

NN NH 1	NR ₂	NR _H 3	2 N	NF H 4
Compound [§]	NR ₂	hD ₂	K _i (nM) # hD ₃	hD_4
1a (L-745,870)	N_N_CI	960	2300	0.43
1b	N—————————————————————————————————————	>1500	3900	1.3
1c	N Ph	1100	1300	1.8
1d		640	170	7.0
2a	N—N——och3	900	530	26
2b	N Ph	280	180	6.5
$\mathbf{2c}^{\dagger}$	NPh	21	10	34
3a	N_Ph	200	250	2.0
3b		600	1100	59
4a	N_N-CI	800	50	11.7
4b	NPh	1300	25	30

Data are the mean of two to four independent determinations
All new compounds were characterised by 'H NMR and mass spectroscopy and gave satisfactory CHN analysis

Single determination

Results and Discussion

Receptor binding was determined by displacement of [3 H]spiperone from cloned human receptors, D₂ and D₃ being stably expressed in CHO cells and D₄ in HEK293 cells. Data on L-745,870 (1 a) and analogues (1 bd) are shown to exemplify the D₄ selectivity achieved in this (3 -aminomethyl-7-azaindole) series with a range of cyclic amine side chains (see **Table**).

Homologation of 1 to give the corresponding 3-aminoethyl-7-azaindoles 2 gave reduced hD_4 binding affinity, whilst retaining modest selectivity over hD_2 and hD_3 in the case of 2a and 2b (c.f. 1b and 1c). The phenyltetrahydropyridine 2c was non-selective as a consequence of increased hD_2 and hD_3 affinity.

The 2-substituted 7-azaindole 3a displayed comparable hD_4 binding to the corresponding 3-substituted analogue 1c, although lower selectivity, whereas the tetrahydroisoquinoline 3b showed reduced hD_4 affinity compared to 1d. An arylpiperazine side chain was not evaluated in this series.

The 2-aminoethyl compounds $\mathbf{4a}$ and $\mathbf{4b}$ had reduced hD_4 affinity compared to $\mathbf{1a}$ and $\mathbf{1c}$ (in common with the analogous 3-aminoethyl analogues $\mathbf{2a}$ and $\mathbf{2b}$ described above). However, hD_3 affinity was improved some 50-fold in each case, an interesting finding given the poor D_3 activity shown by most of the other 7-azaindole compounds prepared.

Conclusion

The alternative 7-azaindole compounds 2-4 investigated generally gave poorer human dopamine D_4 receptor affinity than the corresponding 3-aminomethyl-7-azaindoles 1 (exemplified by L-745,870, 1a), although some degree of selectivity over hD_2 was retained in many of the compounds disclosed here.

Acknowledgements: We are indebted to Paul Mitchell for the synthesis of compound 2a (by an alternative route to that described here) and to Steve Thomas for conducting the nOe experiment.

References and Notes

- 1. Seeman, P. Synapse 1987, 1, 133.
- Seeman, P. Neuropsychopharmacology 1992, 7, 261.
- (a) Sibley, D.R.; Monsma F.J., Jr. TiPS 1992, 13, 61; (b) Grandy, D.K.; Civelli, O. Curr. Opin. Neurobiol. 1992, 2, 275; (c) Seeman, P.; Van Tol, H.H.M. TiPS 1994, 15, 264.
- 4. Van Tol, H.H.M.; Bunzow, J.R.; Guan, H-C.; Sunahara, R.K.; Seeman, P.; Niznik, H.B.; Civelli, O. Nature 1991, 350, 610.
- 5. (a) Kulagowski, J.J.; Patel, S. Curr. Pharm. Design 1997, 3, 355; (b) Liegeois, J.-F.; Eyrolles, L.; Bruhwyler, J.; Delarge, J. Curr. Med. Chem. 1998, 5, 77.
- Kulagowski, J.J.; Broughton, H.B.; Curtis, N.R.; Mawer, I.M.; Ridgill, M.P.; Baker, R.; Emms, F.; Freedman, S.B.; Marwood, R.; Patel, Shil; Patel, Smita; Ragan, C.I.; Leeson, P.D. J. Med. Chem. 1996, 39, 1941.
- 7. Patel, S.; Freedman, S.; Chapman, K.L.; Emms, F.; Fletcher, A.E.; Knowles, M.; Marwood, R.; McAllister, G.; Myers, J.; Patel, S.; Curtis, N.; Kulagowski, J.J.; Leeson, P.D.; Ridgill, M.; Graham, M.; Matheson, S.; Rathbone, D.; Watt, A.P.; Bristow, L.J.; Rupniak, N.M.; Baskin, E.; Lynch, J.J.; Ragan, C.I. J. Pharmacol. Exp. Ther. 1997, 283, 636.
- 8. Bristow, L.J.; Collinson, N.; Cook, G.P.; Curtis, N.; Freedman, S.B.; Kulagowski, J.J.; Leeson, P.D.; Patel, S.; Ragan, C.I.; Ridgill, M.; Saywell, K.L.; Tricklebank, M.D. J. Pharmacol. Exp. Ther. 1997, 283, 1256.
- 9. Kramer, M.; Last, B.; Zimbroff, D.; Hafez, H.; Alpert, M.; Allan, E.; Rotrosen, J.; McEvoy, J.; Kane, J.; Kronig, M.; Merideth, C.; Silva, J.A.; Ereshefsky, L.; Marder, S.; Wirshing, W.; Conley, R.; Getson, A.; Chavez-Eng, C.; Cheng, H.; Reines, S. Arch. Gen. Psychiatry 1997, 54, 567.
- 10. Bristow, L.J.; Kramer, M.S.; Kulagowski, J.; Patel, S.; Ragan, C.I.; Seabrook, G.R. TiPS 1997, 18, 186.
- 11. Larock, R.C.; Yum, E.K. J. Am. Chem. Soc. 1991, 113, 6689.
- Chen, C.; Lieberman, D.R.; Larsen, R.D.; Reamer, R.A.; Verhoeven, T.R.; Reider, P.J.; Cottrell, I.F.; Houghton, P.G. Tetrahedron Lett. 1994, 35, 6981.
- 13. Such methodology has been applied to the synthesis of 5- and 6-azaindoles; Wensbo, D.; Eriksson, A.; Jeschke, T.; Gronowitz, S.; Cohen, L.A. Tetrahedron Lett. 1993, 34, 2823.
- 14. Estel, L.; Marsais, F.; Queguiner, G. J. Org. Chem. 1988, 53, 2740.
- 15. Romero, D.L.; Mitchell, M.A.; Thomas, R.C.; Palmer, J.R.; Tarpley, W.G.; Aristoff, P.A.; Smith, H.W. US Patent Appl. 491782, 28 Dec 1989.
- 16. Hands, D.; Bishop, B.; Cameron, M.; Edwards, J.S.; Cottrell, I.F.; Wright, S.H.B. Synthesis 1996, 877.